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Overview

• There are at least two flow situations in which the viscous term in the 
Navier–Stokes equation can be neglected. 

• The first occurs in high Reynolds number regions of flow where net 
viscous forces are known to be negligible compared to inertial and/or 
pressure forces; we call these inviscid regions of flow. 

• The second situation occurs when the vorticity is negligibly small; we 
call these irrotational or potential regions of flow. 

• In either case, removal of the viscous terms from the Navier–Stokes 
equation yields the Euler equation.

• There are some serious deficiencies associated with application of 
the Euler equation to practical flow problems. High on the list of 
deficiencies is the inability to specify the no-slip condition at solid 
walls.
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Irrotational 
flow

• Irrotational flow around 
a wing.

• The solution may be 
obtained from potential 
flow theory.

• This particular solution 
is obtained as the sum 
of three elementary 
solutions: free stream, 
line source and line 
vortex. 

• Lift force proportional to 
the circulation and free 
stream velocity.

• Drag force zero.



• By the mid-1800s, the Navier–Stokes equation was known, but couldn’t be 
solved except for flows of very simple geometries.

• Meanwhile, mathematicians were able to obtain beautiful analytical 
solutions of the Euler equation and of the potential flow equations for flows 
of complex geometry, but their results were often physically meaningless.

• A major breakthrough in fluid mechanics occurred in 1904 when Ludwig 
Prandtl (1875–1953) introduced the boundary layer approximation. 

• Prandtl’s idea was to divide the flow into two regions: an outer flow region 
that is inviscid and/or irrotational, and an inner flow region called a 
boundary layer—a very thin region of flow near a solid wall where viscous 
forces and rotationality cannot be ignored.

• In the outer flow region, the continuity and Euler equations apply to obtain 
the outer flow velocity field, and the Bernoulli equation to obtain the 
pressure field. Alternatively, if the outer flow region is irrotational, we may 
use potential flow techniques.
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The boundary 
layer

Prandtl introduced the 
boundary layer 
approximation to bridge 
the gap between the 
Euler equation and the 
Navier–Stokes equation, 
and between the slip 
condition and the no-slip 
condition at solid walls.
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The idea

We solve for the 
outer flow 
region first, and 
then fit in a thin 
boundary layer 
in regions 
where vorticity
and viscous 
forces cannot 
be neglected.
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The larger the Reynolds number, the thinner the boundary layer along the 

plate at a given x-location

Note: this is not 
a streamline.
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Laminar to turbulent transition

Analogy:



Photograph 
of a velocity 
profile of a 
uniform 
stream over 
a flat plate 
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Wortmann, F. X. 1977 AGARD Conf. Proc. no.

224, paper 12



Negligible viscosity or irrotational flow cannot be assumed near 
solid boundaries, such as the case of the airplane wing.
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Rigid-body-like vortex

v ∝ r
Parallel flow with shear Irrotational vortex

v ∝ 1/r

Relative velocities (magnified) around the highlighted point

Vorticity ≠ 0 Vorticity ≠ 0 Vorticity = 0



Vorticity and lines of vorticity

• Since Ω = ∇ × 𝑉 its divergence is zero, i.e. ∇ ∙ Ω = 0. 

• The vorticity is a solenoidal field with lines of vorticity (like 
streamlines) parallel to its direction and density proportional to its 
magnitude. 

• Dynamics of the lines of vorticity differs in the Euler and Navier-
Stokes equations.
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Euler fluid
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Euler equation

Identity 

Application of the curl 

Chap. 5, Acheson
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Identity 

We have 

Vorticity equation
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If the flow is 2D

Then

It follows that
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Vortex lines in the z-direction

Z-component:

The vorticity of a fluid element increases with time if                           . 

If the fluid elements are being stretched in the z-direction, it leads to an 
intensification of the local vorticity field.
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Kelvin circulation theorem
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Navier-Stokes: Viscosity drives the diffusion 
of vorticity
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Faber, chap. 10



Example: Poiseuille flow

21



Sudden motion of an infinite flat plane 
(revisited)
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Flow above a solid wall at y = 0. Initially, the fuid is at rest. At time t = 0, the 

boundary starts to move with velocity U in the x direction.

The velocity field is

and the Navier-Stokes equation 

reduces to 



• Boundary conditions: u = U on y = 0 and U → 0 as y → ∞.

• We also impose the initial condition: u = 0 at t = 0.

• The velocity u(x, t) thus satisfies the 1-D diffusion equation with 
diffusivity 𝜐 =

𝜇

𝜚
, where 𝜐 is the kinematic viscosity.

• Similarity solution is
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SOLUTION OF THE 1D DIFFUSION EQUATION



Start up of shear flow (parallel plates)
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SOLUTION OF START UP OF SHEAR FLOW



Diffusion of vorticity from the surface to the 
fluid 
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Boundary layer equations

• We consider steady, two-dimensional flow in the xy-plane in Cartesian 
coordinates. The methodology can be extended to axisymmetric boundary layers 
or to three-dimensional boundary layers in any coordinate system. 

• We neglect gravity since we are not dealing with free surfaces or with buoyancy-
driven flows (free convection flows), where gravitational effects dominate. 

• We consider laminar boundary layers; turbulent boundary layer equations are 
beyond the scope of this course. 

• For a boundary layer along a solid wall, we adopt a coordinate system in which x 
is everywhere parallel to the wall and y is everywhere normal to the wall.

• When we solve the boundary layer equations, we do so at one x-location at a 
time, using this coordinate system locally, and it is locally orthogonal.
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The nondimensionalized Navier–Stokes equation is

• The Euler number is of order 1, since pressure differences outside the boundary layer are 

determined by the Bernoulli equation and ∆P ~𝜌𝑉2.
• V is a characteristic velocity of the outer flow, typically the free-stream velocity for bodies 

immersed in a uniform flow. 

• The characteristic length is L, some characteristic size of the body. For boundary layers, x 

is of order o L, and Reynolds number is Rex, usuallly very high.

Redo the nondimensionalization of the equations based on appropriate 

scales within the boundary layer. 

• Since x ~ L, we use L as the scale for distances in the streamwise 

direction and for derivatives with respect to x. However, this scale is 

too large for derivatives with respect to y. We use 𝛿 for distances in 

the direction normal to the streamwise direction and for derivatives 

with respect to y. 

• Similarly, we use U as the characteristic velocity, where U is the 

magnitude of the velocity component parallel to the wall at a location 

just above the boundary layer. U is in general a function of x. 



• Thus, within the boundary layer at some value of x, the orders of magnitude are

• The order of magnitude of velocity component v is obtained from the continuity 
equation

• Since the two terms have to balance each other, they must be of the same order of 

magnitude. Thus we obtain the order of magnitude of velocity component v,

• Since δ/L << 1 in a boundary layer, we conclude that v << u, and the adimensional 
variables are
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We now consider the x- and y-components of the Navier–Stokes equation. We substitute 

these nondimensional variables into the y-momentum equation, giving

After some algebra

The middle term on the r.h.s. is clearly smaller than any other term since ReL = UL/𝜐 ≫1. 

For the same reason, the last term on the right is much smaller than the first term on the 

right. Neglecting these two terms leaves the two terms on the left and the first term on the 

right. However, since L≫ 𝛿 , the pressure gradient is orders of magnitude greater than the 

advective terms on the left of the equation. Thus, the only term left is the pressure term. 

Since no other term in the equation can balance that term, we have no choice but to set it 

to zero. Thus, the nondimensional y-momentum equation is 

The pressure across a boundary layer ( y-direction) is 

nearly constant.
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Since P is not a function of y, we replace 𝜕P/𝜕x by dP/dx, where P is the pressure 

calculated from the outer flow approximation (using either continuity plus Euler, or the 

potential flow equations plus Bernoulli). The x-component of the Navier–Stokes 

equation becomes

or

The middle term on the right side is orders of magnitude smaller than the terms on the 

left. What about the last term on the right? If we neglect this term, we throw out all the 

viscous terms and are back to the Euler equation. Clearly this term must remain. 

Furthermore, since all the remaining terms are of order unity, the combination of 

parameters in parentheses in the last term on the right side must also be of order 1,
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Finally, since we know from the y-momentum equation analysis that the pressure 

across the boundary layer is the same as that outside the boundary layer, we apply 

the Bernoulli equation to the outer flow region. Differentiating with respect to x we get

Substitution yields



• For a typical boundary layer 
problem along a wall, we 
specify the no-slip condition 
at the wall (u = v = 0 at y = 0), 
the outer flow condition at 
the edge of the boundary 
layer and beyond [u = U(x) as 
y → ∞], and a starting profile 
at some upstream location [u 
= ustarting(y) at x = xstarting, 
where xstarting may or may not 
be zero]. With these 
boundary conditions, we 
simply march downstream in 
the x-direction, solving the 
boundary layer equations as 
we go.
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Example: Flat plate
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No convenient analytical solution is available. 

However, a series solution was obtained in 1908 

by Blasius.



Blasius similarity solution
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Blasius 
solution

Non-linear 
third order 
ODE. 

Solved 
numerically or 
by a series 
expansion.
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• Discussion: The Blasius boundary 
layer solution is valid only for flow 
over a flat plate perfectly aligned 
with the flow. 

• However, it is often used as a 
quick approximation for the 
boundary layer developing along 
solid walls that are not necessarily 
flat nor exactly parallel to the flow, 
as in a car hood.
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A vortex street around a cylinder. This can 
occur around cylinders and spheres, for any 
fluid, cylinder size and fluid speed, provided 
that the flow has a Reynolds number in the 

range ~40 to ~1000.
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Downwind of 
obstacles, in this case, 

the Madeira and 
the Canary Islands off 

the west African 
coast, eddies create 
turbulent patterns 

called votex streets.
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